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Stable compounds with a double bond to silicon were first 
synthesized in 1981, and since then they have been studied 
extensively both experimentally la~c and theoretically.111 In 
contrast, stable species with a triply-bonded silicon are still 
unknown, and only three transient species, HNSi,2 HSiN,3 and 
PhNSi,4 have been characterized spectroscopically. Of these 
species only HSi=N possesses a formal triple bond while the 
isomeric silaisonitriles, HN=Si and PhN=Si, can be regarded 
as having a formal N=Si double bond (i.e., R-N=Si: ** 
R—N+=Si-). A major difficulty in synthesizing compounds 
with Si=X triple bonds results from the fact that "conventional" 
triply-bonded isomers (e.g., HSi=SiH) are generally thermo-
dynamically less stable than isomers having a lower bond order 
to silicon (e.g., H2Si=Si:).1^ Similarly, HSi=N,23'5 H3CSi=N,6 

and PhSi=N6 were calculated to be substantially (i.e., by ca. 
55—65 kcal/mol) less stable than the corresponding silaisoni­
triles. In agreement, early attempts to prepare HSi=N2 and 
PhSi=N4 produced instead HN=Si and PhN=Si, which were 
characterized in argon matrix2b'4 and in the gas phase.2a Only 
very recently, despite the unfavorable thermodynamics and the 
low calculated barrier to isomerization, HSi=N was character­
ized at 10 K.3 In contrast, nitriles are generally more stable 
than isonitriles, and as the barriers to isomerization are relatively 
high, both RC=N and RN=C can be isolated for a variety of 
R substituents.7 

Can other silanitriles be prepared and isolated? One pos­
sibility to proceed is to design systems where RSi=N is more 
stable than the isomeric RN=Si and where relatively large 
barriers separate the two isomers. To find such systems we 
have studied, using high-level ab initio molecular orbital theory,8 

the effect of various substituents, R, on the relative stability of 
RSi=N and RN=Si isomers and on the transition states 
connecting them (eq 1). On the basis of these calculations, we 
suggest silanitriles, which are thermodynamically more stable 
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Table 1. Relative Energies (kcal/mol) of RN-S i (Taken as Zero) 
and RSi=N Isomers 

R 

H 

Li 
BeH 

BH2 
CH3 

SiH3 

AE" 

52.2 (64.4;* 64.2;c 

59.8^65.2O 
39.3 
68.9 

76.2 
42.0 (51.5;" 49.6f 

48.6^) 
61.2 

R 

NH2 

PH2 
OH 

SH 
F 

Cl 

A£° 

10.5 

43.7 
—13.2(—1.8;* —3.3;c 

-11.4;''-6.5') 
21.8 
-34.1 (-31.1;* -22.6;c 

-35.5;d -26.6e) 
-0.5 (8.2;* 9.4;c -QAd) 

0 At MP4/6-311+G**//MP2(fu))/6-31G* (including ZPE). For 
values in parentheses, see footnotes b-e.b G2. c QCISD(T)/6-311G**/ 
/QCISD/6-31G*. rfCASSCF//6-31G*. " QCISD(T)/6-311G(2df,p)// 
QCISD/6-31G*. 

and separated by a significant barrier from the corresponding 
silaisonitriles, making both RSi=N and RN=Si experimentally 
accessible. 

R—SisN 
/ R \ 

S i = N Si = N - R (D 

R = H. Li, BcH, BH2, CH3, SiH3, NH2, PH2, OH, SH, F, Cl 

The geometries of the RSi=N and RN=Si isomers in eq 1 
were fully optimized at MP2(fu)/6-31G*,9 QCISD/6-31G*,10 

and CASSCF/6-31G*.11 Comparison of the calculated and 
experimental stretching frequencies for HSi=N3 and HN=Si2b 

shows that the QCISD/6-31G* and CASSCF/6-31G* frequen­
cies are in reasonable agreement with the experiment whereas 
the MP2(fu)/6-31G* frequencies are too low.12 The failure of 
MP2(fu)/6-31G* is especially apparent for HSi=N, where the 
calculated v(Si—N) of 936 cm-1 is even smaller than in 
HN=SiH2 (1038 cm-1), suggesting in HSi=N a bond order 
smaller than 2. Consequently, we assume that energies calcu­
lated using QCISD/6-31G* or CASSCF/6-31G* geometries are 
more reliable than those which use MP2(fu)/6-31G* geometries. 
Similar conclusions were reached previously for the isoelectronic 
RCN-RNC system.13 

The calculated RSiN-RNSi energy differences, AE, are 
strongly dependent on R (Table 1). For most substituents, i.e., 
R = H, Li, BeH, BH2, CH3, SiH3, PH2, and SH, AE is positive 
and the silaisonitriles, RN=Si, are more stable (at MP4/6-
311+G**//MP2(fu)/6-31G*, CASSCF//6-31G*, QCISD(T)/6-
31 lG**//QCISD/6-3 IG*, QCISD(T)/6-31 lG(2df,p)//QCISD/6-
31G*, and G213) than the isomeric silanitriles by 22—76 kcal/ 
mol. For R = NH2 and Cl, AE is significantly smaller (10.5 
and —0.5 kcal/mol, respectively). AE is in general remarkably 
smaller for the first-row substituents than for the corresponding 
second-row substituents, e.g., AE for R = CH3 vs SiH3, NH2 

vs PH2, OH vs SH (Table 1). On the other hand, AE is negative 
for R = F and OH. FSi=N and HOSi=N are more stable than 
the corresponding silaisonitriles, FN-Si and HON=Si, by 26.6 
and 6.5 kcal/mol, respectively (QCISD(T)/6-311G(2df,p)// 
QCISD/6-31G*, Table 1). 
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Table 2. Calculated Barriers (kcal/mol) for the RSi=N •» RN=Si Isomerization" 

R 

H 
CH1 

OH 
F 
Cl 

R 

Li 
BH. 
NH. 
SH 

MP4* 

32.9 
34.7 
55.3 
54.7 
56.5 

RSiN 

G2 

8.3 
13.6 
37.5 
46.2 
19.4 

RSiN — RNSi'' 

1.8 
17.3 
47.5 
42.1 

-RNSi 

QCISD 

11.9(11.4) 
18.7 
34.2 (35.8) 
44.3 (49.3) 
26.3 

CASSCP' 

19.0 
27.8 
45.3 
64.8 
36.5 

RNSi - RSiN'' 

41.1 
93.5 
58.0 
63.9 

R 

BeH 
SiH 
PH. 

MP4'' 

85.1 
76.6 
42.1 
20.6 
56.0 

RNS 

G2 

73.3 
65.1 
35.7 
18.5 
27.6 

RSiN — RNS 

13.2 
21.1 
27.5 

- R S i N 

QCISD' 

76.1 (76.6) 
68.3 
31.1 (29.4) 
21.8 (22.7) 
35.7 

" 

CASSCF' 

78.9 
76.4 
33.8 
29.3 
36.1 

RNSi — RSiN'' 

82.1 
82.3 
71.2 

"The lower barrier in each case is given in boldface. '' MP4/6-31 l+G**//MP2(fu)/6-31G* (including ZPE). ' QCISD(T)/6-31 lG**//QCISD/6-
3IG*. in parentheses QCISD(T)/6-31 lG(2df.p)//6-31G*. ''CASSCF//6-31G*. 
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Figure 1. Optimized geometries of MP2(fu)/6-3 IG* (QCISD/6-3IG* 
values in parentheses) of the transition structures for the RSi=N ** 
RN=Si isomerization. for R = H. CH3, OH. and F. 

The effect of R on A £ can be understood in terms of the 
R - S i vs R - N bond energies. In general, elements which are 
more electropositive than Si increase the RSi=N vs RN=Si 
energy differences (relative to R = H), while more electrone­
gative elements decrease the gap; AE is negative for R — OH 
and F, where the very strong S i - O and S i - F bond energies 
(dissociation energies: S i - O , 129 kcal/mol; S i - F , 152 kcal/ 
mol; N - 0 , 4 8 kcal/mol; N - F , 68 kcal/mol)14 override the large 
(ca. 60—64 kcal/mol) intrinsic preference of HNSi over HSiN. 

The transition structures (TS) for the RSiN —- RNSi isomer­
ization were determined at the MP2(fu)/6-31G*, CASSCF/6-
3IG*, and QCISD/6-3 IG* levels of theory, and four represen­
tative cases are shown in Figure 1. For most substituents, i.e., 
for R = H. Li. BeH, BH2, CH3 , NH2, PH2, SH, OH, and Cl, 
the TS occurs relatively "early" with respect to R S i = N along 
the reaction coordinate. For example, in the TS for the 
migration of R = H, CH3, and OH, r(Si---R) = 1.525, 2.013, 
and 1.752 A, respectively, compared to r(Si~R) of 1.493, 1.890, 
and 1.648 A in the corresponding RSiN (at QCISD/6-3 IG*). 
In contrast, for R = F the TS is relatively "late" (Figure 1) 
with a well-advanced N - F bond of 1.480 A (compared to 1.346 
A in FNSi) and a long Si---F distance of 2.399 A (1.603 A in 
FSiN). 

^ (14) (a) Walsh. R. in ref la. pp 371-391. (b) Dasent, W. E. Inorganic 
Energetics; Penguin: Harmondsworth, England. 1970. 
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Figure 2. Schematic reaction diagram at QCISD(T)/6-31 lG(2df.p)// 
QCISD/6-3 IG* for the isomerization of HSiN, FSiN, and HOSiN to 
the corresponding silaisonitriles. Calculated energies are given in kcal/ 
mol. 

The calculated isomerization barriers (Table 2) are strongly 
dependent on the computational level, but in analogy to the 
minima, we assume that the most reliable barriers are obtained 
at QCISD(T)/6-311G(2df,p)//QCISD/6-31G*. The activation 
energy for the RSiN —* RNSi isomerization is relatively small 
for R = H (11.4 kcal/mol), as expected from the Hammond 
hypothesis for a highly exothermic reaction. For R = F and 
OH the barrier heights (RNSi — RSiN) are larger, i.e., 22.7 
and 29.4 kcal/mol, respectively, suggesting that these rearrange­
ments will be slow even at ambient temperatures (Figure 2). 
F S i = N and HOSi=N are therefore excellent candidates for 
synthesis, identification, and characterization, and we hope that 
this study will prompt experimental investigations aimed at this 
goal. 
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